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Two Ways of Approaching Traffic Flow

Microscopic (discrete): study interactions between individual
cars

Pro: Gives a more accurate representation of the flow
Con: Very computationally intensive, even for computers

Macroscopic (continuous): properties of individual cars
treated as insignificant to the overall flow

Pro: Can be represented using differential equations and
general variables
Con: May not give accurate representation, especially in
“extreme” situations
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Current Microscopic Models

Cellular automata model: Road is modeled by lattice, cars
travel from one lattice to another

Car-following model: Vehicles modify speed according to
vehicles in front

Multi-class model: Several classes of car types and drivers
have different preferences

For our model, we drew on ideas from the cellular automata
and car-following models, but assumed all cars were
functionally identical
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The Microscopic View of Overtaking

For car B to change lanes, it must consider the locations and
velocities of cars A, C, and D.
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The Microscopic View of Overtaking

Gipps’ Model:

Theorem

vn(t + r) =
min(vn(t) + 2.5anr(1 − vn(t)/Vn)

√
(0.025 + vn(t)/Vn), bnr +√

(bnr)2 − bn(2(xn−1(t) − sn−1 − xn(t)) − vn(t)r − vn−1(t)2/b))

Gipps’ Model correctly accounts for the circumstances
necessary for an individual car overtaking

Accurate in theory but variables can be difficult to compute
and track

Used in this project to run a computer simulation

Needed reasonable estimations of some variables
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The Macroscopic Model

Variables:

Distance x , time t

Velocity: v(x , t) = ∆x
∆t

Density over some interval: ρ(x , t) = Number of cars
∆x

Actual interval size is insignificant, but should not be too small
or too large

Flux: J(x , t) = ρ(x , t)v(x , t)

Number of cars passing through a certain point per unit time
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New Model for Two-Lane Macroscopic Flow

Cars originating in lane 1 can move to lane 2 to overtake, but
lane 2 cars cannot switch lanes

Modification of ”Keep-Right-Except-to-Pass” model

Lane 1 cars currently on lane 1 have velocity v1, density ρ1;
those currently on lane 2 have velocity v2, density ρ2

Lane 2 cars have velocity u and density β

Density can be normalized such that ρ1 + ρ2 = 1, like a
“probability”
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Example: Constant density distribution

Assume all cars have length L, distance d from each other in
a two-lane highway

Since density is constant, we could also assume velocity is
constant and thus no overtaking

Then, density is 1
L+d for every interval

Total flux J = J1 + J2 = ρ1v1 + ρ2v2 + βu is constant
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New Model for Two-Lane Macroscopic Flow

Vector fields for velocity and density
Using Greenshields model

Velocity is linear to density for all cars: v = vm(1 − ρ
ρm

)
Not considering individual drivers’ preferences — vm, ρm
constants

The speed-density relationship for data taken from four roads in
different countries.
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Lighthill-Whitman-Richards Model

For single-lane flow, the following approximate relation holds:

Theorem

∂ρ(x , t)

∂t
+
∂J(x , t)

∂x
= 0

Proved using Fundamental Theorem of Calculus and
conservation of vehicles
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Intermediate Results

Theorem

The LWR model holds for multiple-lane flow as well; that is, for
two lanes, ∂

∂t (ρ1 + ρ2) = − ∂
∂x (ρ1v1 + ρ2v2)

Definition

The inviscid Burgers’ equation describes fluid flow with zero
viscosity: ∂v

∂t + v ∂v
∂x = 0.

Linear velocity model actually generated an additional ∂2v
∂x2

term
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Potential Applications

Operating an unmanned vehicle

Developing ways to improve traffic systems and minimize jams

Extending to model the movement of a fluid along a fixed
pathway
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Future Research

Comparing our theoretical model to a computer simulation
and real data

Take safety into account (e.g. unexpected braking)

Removing the simplifying restriction on cars in Lane 2

Improving the velocity model to make it more realistic
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